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Deficits in numerical magnitude perception characterize the mathematics learning disability developmental
dyscalculia (DD), but recent studies suggest the relation stems from inhibitory control demands from incon-
gruent visual cues in the nonsymbolic number comparison task. This study investigated the relation among
magnitude perception during differing congruency conditions, executive function, and mathematics achieve-
ment measured longitudinally in children (n = 448) from ages 4 to 13. This relation was investigated across
achievement groups and as it related to mathematics across the full range of achievement. Only performance
on incongruent trials related to achievement. Findings indicate that executive function in a numerical context,
beyond magnitude perception or executive function in a non-numerical context, relates to DD and mathemat-
ics across a wide range of achievement.

Mathematical thinking pervades nearly all aspects
of modern life, from personal accounting to under-
standing important information about one’s health.
Accordingly, individuals with poor mathematical
skills are less likely to graduate high school, go to
college, have steady employment (Bynner & Par-
sons, 2006; Rivera-Batiz, 1992), and are at a higher
physical and mental health risk (Bynner & Parsons,
2006; Duncan et al., 2007; Hibbard et al., 2007). The
development of mathematical skills can be affected
by a range of factors including education, home
environment, and reading ability. However, a sub-
stantial body of research indicates that individual
differences in the cognitive system used to perceive
and manipulate numerical magnitudes, often
labeled the approximate number system (ANS;
Feigenson, Dehaene, & Spelke, 2004), play a foun-
dational role in mathematics development (Chen &
Li, 2014; Schneider et al., 2017; Schwenk et al.,
2017). Furthermore, an estimated 3%–6% of the
population is affected by the specific mathematics
learning disability developmental dyscalculia (DD;

Shalev, Auerbach, Manor, & Gross-Tsur, 2000;
Sz}ucs & Goswami, 2013). Individuals with DD dis-
play difficulties with fundamental aspects of
numerical processing from very early ages and con-
tinue to struggle with math, even when given the
same schooling opportunities as their peers. How-
ever, the nature of these numerical deficits and their
relation to the abilities of typically developing (TD)
populations remains poorly understood.

The ANS, Mathematics Achievement, and Dyscalculia

The most commonly used behavioral measure of
ANS function is the nonsymbolic number compar-
ison task. In this task, participants judge which of
two groups of objects, such as dots or squares, is
more numerous. Higher accuracy rates and faster
response times are thought to indicate higher acuity
and enhanced efficiency of the ANS (Inglis & Gil-
more, 2014). There is considerable support for a
relation between efficiency of the ANS and mathe-
matics achievement, both as a marker for DD (for
reviews, see Iuculano, 2016; Szkudlarek & Brannon,
2017) and across the full range of mathematics
achievement (for meta-analyses, see Chen & Li,
2014; Schneider et al., 2017).

Accordingly, the dominant theory regarding a
core deficit in DD proposes an impairment of the
ANS, in part because individuals with DD have
been shown to perform more poorly in tasks
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designed to measure the ANS, such as the nonsym-
bolic number comparison task (Mazzocco, Feigen-
son, & Halberda, 2011; Mejias, Mussolin, Rousselle,
Gr�egoire, & No€el, 2012). Furthermore, neuroimag-
ing research suggests that individuals with DD
have atypical structure and function of proposed
neural substrates of the ANS, such as the intrapari-
etal sulcus (Ashkenazi, Black, Abrams, Hoeft, &
Menon, 2013; Dinkel, Willmes, Krinzinger, Konrad,
& Koten, 2013; Kaufmann et al., 2009; Mussolin
et al., 2010; Price, Holloway, R€as€anen, Vesterinen,
& Ansari, 2007; Rosenberg-Lee et al., 2015; Rotzer
et al., 2008; Rykhlevskaia, Uddin, Kondos, &
Menon, 2009). Given this evidence, many research-
ers suggest that deficits in symbolic number pro-
cessing, arithmetic fluency, and higher order
mathematical thinking stem from a core deficit in
the ANS (Butterworth, Varma, & Laurillard, 2011;
Iuculano, Tang, Hall, & Butterworth, 2008; Wilson
& Dehaene, 2007).

Although there is some consensus that the ANS
is atypical in individuals with DD, there is much
disagreement as to the true mechanistic nature of
this deficit (Sz}ucs & Goswami, 2013), its causal role
in DD (Mazzocco & Rasanen, 2013), and whether
the deficit is isolated to the ANS or may be con-
comitant with deficits in symbolic representation of
number or issues related to executive functions
(Fias, Menon, & Szucs, 2013; Rousselle & No€el,
2007; Sz}ucs, Devine, Soltesz, Nobes, & Gabriel,
2013). It should be further stated that the develop-
mental relation between the ANS and the acquisi-
tion of symbolic number faculty is both important
and not well understood. It is important in that
mathematics is inherently symbolic, and further,
most symbolic number tasks have a significantly
stronger relation to math achievement than non-
symbolic tasks (De Smedt, No€el, Gilmore, & Ansari,
2013; Fazio, Bailey, Thompson, & Siegler, 2014;
Geary et al., 2018; Holloway & Ansari, 2009; Sch-
neider et al., 2017). Therefore, the importance of the
ANS for math development may depend on its
relation to the acquisition of symbolic number
(Reynvoet & Sasanguie, 2016; vanMarle et al., 2018)
or their continued relation throughout development
(Leibovich & Ansari, 2016), but remains a matter of
considerable debate.

Adding to this complication, individual differ-
ences in ANS acuity consistently correlate with
mathematics across the full range of achievement
(Halberda, Mazzocco, & Feigenson, 2008; Keller &
Libertus, 2015; Schneider et al., 2017), suggesting
the relation is not isolated to group differences that
identify severe mathematics deficits but rather

extends broadly across achievement levels. As a
result, it remains unclear whether DD represents a
qualitatively distinct subgroup with distinct cogni-
tive deficits or is the lowest extreme of a continuous
distribution. This distinction is important for devel-
oping appropriate intervention strategies to remedi-
ate low mathematics skills (Butterworth & Kovas,
2013; Henik, Rubinsten, & Ashkenazi, 2011). For
example, if individuals with DD are identified as
suffering from a specific impairment of magnitude
processing that is qualitatively distinct in its mecha-
nistic origin from their TD peers, it would suggest
that remediation should target the training of this
uniquely impaired mechanism.

Nonsymbolic Number Comparison as a Measure of the
ANS?

One problem undermining the link between
ANS function and mathematics development is the
reliance on nonsymbolic number comparison as a
measure of ANS acuity. Conventionally, nonsym-
bolic number comparison performance has been
interpreted as a measure of ANS function (De
Smedt et al., 2013). However, recent research sug-
gests that the task may be measuring more than
ANS acuity alone. Specifically, several studies have
shown that nonsymbolic number comparison is
highly influenced by the visual parameters of task
stimuli (Gebuis & Reynvoet, 2011, 2012; Leibovich
& Henik, 2013; Sz}ucs, Nobes, et al., 2013). For
example, Sz}ucs, Devine, et al. (2013) and Sz}ucs,
Nobes, et al. (2013) showed that congruency effects
have a large impact on the ratio-based internal
Weber fraction, or w, a common metric of measur-
ing ANS acuity. Furthermore, the impact was even
greater for children than in adults, leading them to
suggest the visual parameter confound could also
be complicated by an interaction with development.
In general, visual properties such as surface area
and object size covary with numerosity. If these
properties are not controlled when creating stimuli,
participants can rely on non-numerical cues to
select the more numerous array. Thus, to ensure
participants employ a strategy focused on numeros-
ity, stimuli are designed such that, in some trials,
the more numerous dot set has a greater surface
area or dot size (congruent trials), and in other tri-
als a lesser surface area or dot size (incongruent tri-
als; e.g., Dehaene, Izard, & Piazza, 2005).

Recent studies suggest that performance on
incongruent trials may drive the relation between
nonsymbolic number comparison and mathematics
performance (Bugden & Ansari, 2016; Clayton,
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Gilmore, & Inglis, 2015; Cragg, Keeble, Richardson,
Roome, & Gilmore, 2017; Fuhs & McNeil, 2013; Gil-
more et al., 2013; Keller & Libertus, 2015). For
example, in a study comparing nonsymbolic num-
ber comparison performance in children with DD
versus TD peers, Bugden and Ansari (2016) found
that children with DD only differed on incongruent
trials. A follow-up analysis showed that children’s
visuospatial working memory predicted ANS acu-
ity on incongruent trials, indicating that visuospa-
tial working memory may be an important
cognitive process utilized for extraction of numeros-
ity in the presence of other visually salient informa-
tion. Similarly, studies by Gilmore et al. (2013) and
Fuhs and McNeil (2013) found that only perfor-
mance on incongruent trials of the nonsymbolic
number comparison task was related to mathemat-
ics performance across a wide range of mathematics
achievement in primary school and preschoolers,
respectively. To explain this specific relation, the
authors of those studies suggest that incongruent,
non-numerical visual cues in the comparison task
require participants to inhibit their visually based
response before making a quantity-based judgment,
thus engaging inhibitory control mechanisms.
Accordingly, both Gilmore et al. and Fuchs and
McNeil posit that inhibitory control and selective
attention demands of incongruent trials, rather than
ANS acuity, drive the relation between nonsym-
bolic comparison performance and mathematics.
Indeed, after controlling for inhibitory control, the
relation between mathematics performance and
nonsymbolic comparison was no longer statistically
significant in both studies.

The ANS and Executive Function

Still, the contribution of executive function to the
relation between nonsymbolic number comparison
and mathematics performance remains unclear. In
contrast to Gilmore et al. (2013) and Fuhs and
McNeil (2013), both Keller and Libertus (2015) and
Gilmore, Keeble, Richardson, and Cragg (2015)
found that the relation between accuracy in the
number comparison task and mathematics persisted
when controlling for inhibitory control, which sug-
gests the relation between number comparison per-
formance and mathematics is not fully accounted
for by domain-general inhibitory control. Starr,
DeWind, and Brannon (2017) compared the relation
between mathematics achievement and the influ-
ence of numerical acuity as distinct from the influ-
ence of non-numerical visual parameters on
nonsymbolic number comparison performance

while also measuring inhibitory control in a non-
numerical task (i.e., day/night in children and flan-
ker in adults) in a 4- and 6-year-old sample and a
sample of adults. Their results indicated that
numerical acuity correlated with higher math scores
in the 6-year-old sample, whereas non-numerical
bias and inhibitory control did not, which, in agree-
ment with the two previous studies, suggests that
numerical discrimination relates to mathematics
achievement. However, Starr et al.’s measure of
non-numerical bias is a regression term that
accounts for the influence of visual parameters on
participants’ behavior, which is somewhat distinct
from performance on trials where visual informa-
tion is incongruent with numerosity and would
more directly address the notion of a number-speci-
fic executive function. Furthermore, it should be
noted that all five of these studies focused on inhi-
bitory control in a TD sample, whereas Bugden and
Ansari’s (2016) findings related performance on
incongruent trials of the nonsymbolic comparison
task to group differences between DD and TD chil-
dren. In addition to the group differences versus
individual differences distinction between studies,
Bugden et al. investigated the role of visuospatial
working memory as opposed to inhibitory control.

Although dominant models indicate that execu-
tive function can be divided into the broad cate-
gories of working memory/updating, inhibitory
control, and attention shifting (Bull & Scerif, 2001;
Miyake et al., 2000), most prior studies on nonsym-
bolic comparison and mathematics achievement
have controlled for only one aspect of executive
function, either working memory or inhibitory con-
trol. As a result, the more fine-grained mechanistic
relations between executive function deficits and
ANS deficits have been difficult to determine. To
address these issues, this study focuses on two out-
standing questions regarding the relation among
the ANS, executive function, and mathematics
achievement in typically and atypically developing
individuals in order to provide more information
about the specific mechanisms at play during non-
symbolic number comparison.

First, what are the mechanisms underlying the
relation between performance on incongruent trials
of the nonsymbolic comparison task and mathemat-
ics achievement as compared to congruent trials?
Previous studies have framed the correlation
between nonsymbolic comparison performance and
mathematics achievement as attributable to either
individual differences in the ANS or executive func-
tion. An additional possibility is that incongruent
trials on the nonsymbolic number comparison task
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require an interaction of executive function and the
ANS, or in other words, a number-specific executive
function. Rather than the relation between number
comparison performance and math achievement
depending on neurocognitive mechanisms associ-
ated with numerical magnitude processing or exec-
utive function independently, a deficit could
originate from the biological interplay of these two
mechanisms. Successfully answering an incongruent
trial requires selective attention to the discrete
quantity of each dot set while ignoring other sali-
ent, yet irrelevant, stimulus dimensions. Consistent
with this suggestion, experimental studies have
demonstrated a distinction between executive func-
tion related to numerical and non-numerical con-
tent. In a study of DD adults, individuals with DD
had difficulty recruiting attention to numerical
information but not non-numerical information
under heightened cognitive load (Ashkenazi, Rubin-
sten, & Henik, 2009). In children, Bull and Scerif
(2001) demonstrated that inhibitory control and
working memory of numerical information
accounts for significant variance in individual dif-
ferences in mathematics ability beyond similar,
non-numerical measures of executive function.
Therefore, to appropriately account for the possibil-
ity of an interaction between executive function and
the ANS, executive function must be measured in
both non-numerical and numerical contexts.

Second is the relation among executive function,
nonsymbolic number comparison, and mathematics
achievement a specific facet of atypical develop-
ment, comprising a characteristic of DD that sets
the disorder qualitatively apart from typical devel-
opmental trajectories, or is the relation a character-
istic of a broad range of typical mathematics skill
development? Previous research appears to suggest
that measurements of the ANS correlate with math-
ematics across the full range of mathematics
achievement (Schneider et al., 2017). At the same
time, studies suggest that the ANS of individuals
with DD is neurobiologically atypical and functions
differently than that of their TD peers (Mazzocco
et al., 2011; Price et al., 2007). Distinguishing
between these alternatives may provide meaningful
implications for intervention strategies.

This Study

To address the questions above, this study inves-
tigates the relations among ANS function, executive
function, and DD by examining performance on the
nonsymbolic comparison task, separately for con-
gruent and incongruent trials while controlling for

multiple aspects of executive function. Importantly,
executive function here is measured in a non-
numerical context. To build directly on previous
work, we take a similar approach as Mazzocco
et al. (2011). We first compare performance in the
nonsymbolic comparison task across multiple math-
ematics achievement groups (DD, low achieving
[LA], and typically achieving [TA]) defined through
multiple years of consistent achievement, including
the first 3 years of school entry. Second, we con-
sider the relation between performance on the non-
symbolic comparison task and mathematics
achievement more broadly through a regression
analysis with a large sample that includes the full
range of mathematics achievement. In the first anal-
ysis, if DD is characterized by a distinct core deficit
of the ANS, performance on both congruent and
incongruent trials of the task should distinguish
among achievement groups. If, on the other hand,
DD is characterized by deficits specific to executive
function, performance on only the incongruent tri-
als of the nonsymbolic comparison task should
account for achievement group differences but not
after controlling for measures of non-numerical
executive function. However, if impaired number-
specific executive function underlies DD, we would
expect group differences between the DD group
and the other achievement groups on incongruent
trials, but not congruent trials, after controlling for
non-numerical, domain-general executive function-
ing. Similarly, in the second analysis, if number-
specific executive function is related to individual
differences in mathematics achievement across a
wide range of achievement, not only a distinction
between DD and the other achievement groups,
performance on incongruent trials should predict
mathematics achievement beyond what can be
accounted for by congruent trials and multiple com-
ponents of non-numerical executive function.

Method

Participants

The current sample was drawn from a study of
students who participated in an earlier longitudinal
study of early mathematical skills (Pre-K to first
grade; Hofer, Lipsey, Dong, & Farran, 2013). The
analytic sample for the original study included 771
children. In the follow-up study, we were able to
locate 628 students attending public school in the
2013–2014 year in the same district as they attended
in Pre-K (16 had withdrawn from the study in first
grade and were not contacted for further
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participation, 29 had moved out of the state, 53 had
moved out of the district, and 45 were not located
despite all efforts). Of those 628, we obtained par-
ental consent and assessed 517 children in the
2013–2014 school year, 506 children in the 2014–
2015 school year, and 503 children in the 2015–2016
school year. 497 children were assessed at all three
time points in middle school. English language
learners (n = 43) were excluded because non-native
language of mathematics instruction could lead to
low mathematics achievement for reasons other
than the cognitive factors investigated in this study.

Our final sample comprised 448 students for
whom we had measures of mathematics achieve-
ment from two of the three early time points
(spring of preschool, kindergarten, and first grade)
and from two of the three later time points (fifth,
sixth, and seventh grades), reading achievement
measured at the end of kindergarten, inhibitory
control and task switching measured at sixth or
seventh grade, and working memory measured at
fifth or sixth grade. This represents a loss of 26 stu-
dents due to missing data for any of these measures
from the full middle school follow-up sample
(n = 517), or 5.0%, and only complete cases given
the above criteria are analyzed. Methods for resolv-
ing differences in measurement year are described
below in the description of each measure.

The final sample was 56.5% female, 9.6% White,
87.1% Black, 0.7% Hispanic, 1.1% Middle Eastern,
0.2% Asian or Pacific Islander, and 1.3% other races
(no further distinction of race available). Of the 448
students who should have been in sixth grade in
the 2014–2015 school year if they had not been
retained or promoted early, 78 (17.4%) were still in
fifth grade and 1 (0.2%) had been promoted to sev-
enth grade. Students were located in 76 schools in
the first year of the follow-up study (fifth grade),
including 31 elementary schools, 27 middle schools,
11 charter schools, and 7 Innovation Cluster schools
(i.e., schools that had been targeted for additional
resources to boost achievement). Family income
level was inferred on the basis of whether partici-
pants qualified for free or reduced lunches (i.e.,
family income < 1.85 times the U.S. federal income
poverty guideline). In the current sample, 88.6% of
participants qualified for free and reduced lunch,
10.3% did not, and 1.1% individuals were missing
economic status data. Pre-K through first grade and
fifth through seventh-grade waves of data collection
were used to define mathematics achievement
groups. Nonsymbolic comparison performance was
utilized from sixth grade because concurrent mea-
sures of working memory and executive function

were available for children in that year. Mean age
at the end of pre-K, the first data point, was
5.1 years (SD = 0.3, range = 4.5–6.4). See Table S1
for full descriptive statistics.

Achievement Groups

Individuals were placed in achievement groups if
their mathematics achievement scores were consis-
tently in the designated achievement range at two of
the three early assessments (pre-K–first grade) AND
two of the three later assessments (fifth–seventh
grades). Given these criteria, 222 children fit into con-
sistent achievement groups across early and later
assessment periods, thus excluding 226 children,
respectively, from the full sample of 448 whose
achievement level varied beyond the defined thresh-
old across time points. Descriptive statistics for the
achievement group sample (n = 222) are broken
down by achievement group in Table 1.

Our first set of analyses asked whether perfor-
mance on congruent or incongruent trials of non-
symbolic number comparison distinguished children
with DD from their LA and TA peers. One com-
monly used threshold for defining DD is perfor-
mance in the lowest 10th percentile of standardized
mathematics achievement tests (Dinkel et al., 2013;
Mazzocco et al., 2011). Several studies comparing
groups of student achieving in the lowest 10th per-
centile to those in the 11th–25th percentiles reveal
important qualitative differences in cognitive profiles
(Geary, Hoard, Byrd-craven, & Nugent, 2007; Maz-
zocco & Myers, 2003), notably indicating that the
lowest achievement group had an impairment in
nonsymbolic magnitude processing compared to all
other achievement groups (Mazzocco et al., 2011).
Therefore, in this study, we assigned participants to
three different mathematics achievement groups,
DD individuals (≤ 10th percentile), LA individuals
(10th–25th percentile), and TA individuals (25th–
95th percentile). With these grouping criteria, 22 chil-
dren met the criteria for DD, 12 for LA, and 188 for
TA. Only one individual consistently scored > 95th
percentile, a commonly used criterion for school
placement in gifted and talented programs, and a
common threshold for designating high achieving
groups in research (e.g., Hoard, Geary, Byrd-craven,
& Nugent, 2008; Mazzocco et al., 2011). This individ-
ual was removed from further analysis.

There is a great diversity in definitions and cut-
off thresholds for defining DD in prior literature,
and accordingly, findings may not hold across dif-
ferent criteria for selecting DD groups. To address
this heterogeneity in the literature, group
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comparison analyses in this study were replicated
with another commonly used threshold for deter-
mining DD (achievement < 1.5 SD below the popu-
lation mean) and included in Appendix A. Using
this alternative threshold did not alter the results,
suggesting the results are not a product of the cho-
sen threshold.

Many previous studies have attempted to isolate
the neurocognitive mechanisms of DD by studying
a group of individuals with DD compared to a con-
trol group matched on IQ and other cognitive abili-
ties (Landerl, Bevan, & Butterworth, 2004; Mussolin
et al., 2010; Rotzer et al., 2008). This study does not
take this approach for two reasons. First, research
suggests that defining learning disability groups
through discrepancy criteria excludes many individ-
uals with dyscalculia who suffer from comorbid
learning disabilities or other developmental issues.
Most estimates suggest that 20%–40% of individuals
with DD also have dyslexia (Shalev, 2004; Willcutt
et al., 2013; Wilson et al., 2015), and around 25%
also have attention deficits (Landerl, G€obel, & Moll,
2013; Shalev, 2004; Shalev, Auerbach, & Gross-Tsur,
1995). This suggests that DD is inherently heteroge-
neous and would better be characterized by a
framework whereby individuals are designated as
DD through proof of consistent, low mathematics
achievement over time with the presence of ade-
quate educational opportunity (Fuchs, Morgan,

Young, & Rise, 2003). Therefore, rather than
exclude nondiscrepant individuals, this study fol-
lows previous literature (Mazzocco et al., 2011) and
investigates differences in the ANS while control-
ling for reading achievement and domain-general
executive function. Second, this study examines the
intersection of attention mechanisms and magni-
tude processing mechanisms. Any attempt to define
groups as a function of broader measures of
achievement would impede investigation of indi-
vidual differences in executive function, which is
known to correlate with academic achievement.

Procedure

All students assented and students’ families con-
sented to participate, and the study was approved
by the university’s institutional review board.
Assessments were conducted by trained members of
the research staff. The nonsymbolic number compar-
ison task and executive function tasks were adminis-
tered during the spring semester of the students’
sixth-grade year via tablet computer. Testing for
mathematics achievement was completed in a quiet
location at the students’ school with one-to-one
assistance from trained staff during the student’s
pre-K, kindergarten, first-grade, fifth-grade, sixth-
grade, and seventh-grade years. Reading achieve-
ment was assessed at the end of kindergarten.

Table 1
Descriptive Statistics for Achievement Subgroups

Achievement group sample

DD (n = 22, 7 female) LA (n = 12, 6 female) TA (n = 188, 106 female)

M SD Range M SD Range M SD Range

Age (years), pre-K 5.1 0.5 4.5 – 6.4 5.0 0.3 4.7 – 5.5 5.1 0.3 4.5 – 5.6
Age (years), sixth grade 12.2 0.5 11.4 – 13.4 12.0 0.3 11.6 – 12.5 12.0 0.3 11.4 – 12.6
Nonsymbolic comparison
(accuracy, %)

71.5 5.3 62.9 – 81.4 78.2 6.4 70.0 – 87.1 75.8 5.0 58.6 – 91.4

Nonsymbolic comparison
(congruent accuracy, %)

78.7 9.1 63.6 – 90.9 76.9 10.7 54.5 – 86.4 76.3 11.1 40.9 – 95.5

Nonsymbolic comparison
(incongruent accuracy, %)

53.5 13.3 27.8 – 83.3 70.8 21.3 33.3 – 94.4 65.7 14.0 33.3 – 94.4

Nonsymbolic comparison
(Weber fraction, w)

0.37 0.11 0.21 – 0.65 0.26 0.10 0.13 – 0.48 0.27 0.07 0.10 – 0.56

Backward Corsi (z-score of
max span)a

�1.21 1.22 �2.4 – 0.95 0.03 0.57 �0.75 – 0.95 0.37 0.85 �2.44 – 2.65

Hearts and flowers (z-score of
accuracy, %)a

�1.29 0.79 �2.33 – 0.82 �0.16 0.83 �1.90 – 1.83 0.40 0.83 �1.90 – 1.83

Letter-word identification
(WCJ–III, standard score)

91.4 9.90 75 – 113 97.4 11.9 73 – 113 115.1 11.9 85 – 144

Note. WCJ–III = Woodcock Johnson–III; DD = developmental dyscalculia; LA = low achieving; TA = typically achieving.
az-scores presented based on full sample of 448 individuals.
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Cognitive Tasks

Nonsymbolic Number Comparison

Participants were presented with two sets of dots
simultaneously and asked to indicate via button
press which set was more numerous (i.e., which set
contained more dots). The set on the left side of the
screen contained yellow dots and the set on the right
side contained blue dots, which corresponded to
color-coded left and right buttons. Response sides
were fully counterbalanced. Trials consisted of
1,200 ms stimulus presentation followed by 1,800 ms
of fixation (see Figure 1). Seven ratios were pre-
sented, 0.33 (5 dots vs. 15 dots), 0.5 (5 vs. 10), 0.67 (6
vs. 9), 0.8 (8 vs. 10), 0.86 (12 vs. 14), 0.88 (7 vs. 8), 0.9
(9 vs. 10). The number of dots in each stimulus ran-
ged from 5 to 15. Each ratio was presented 10 times
for a total of 70 trials, which were preceded by six
practice trials of the easiest two ratios.

If individuals did not correctly respond to at
least four of the six practice trials, practice trials
were repeated up to two times. If participants did
not answer four of six correctly on any practice
run, they did not proceed to the experimental trials.
Ratios, stimulus presentation times, and order of
presentation were modeled after Odic, Hock, and
Halberda (2014). To control for the possibility that
participants might utilize a strategy based on visual
cues rather than number of dots, the following
visual properties of dot sets were varied using a
modified version of the MATLAB code recom-
mended by Gebuis and Reynvoet (2011): convex
hull (area extended by a stimulus), total surface
area (aggregate value of dot surfaces), average dot
diameter, total circumference, and density (convex
hull divided by total surface area). In

approximately one quarter of the trials (22 of 70),
all four visual properties were congruent with
greater numerosity (i.e., the greater number of dots
had a greater convex hull, surface area, etc.). In
another quarter of the trials (18 of 70), all four
visual properties were incongruent with greater
numerosity. In the remaining trials, visual proper-
ties were mixed congruent and incongruent.

Analyses of task effects include all trials. Analy-
ses directly addressing the research questions
include trials that were either fully congruent (22
trials) or incongruent (18 trials) on all five visual
parameters. Mixed congruency trials were excluded.
Congruent versus incongruent trials per ratio are
not perfectly balanced in trial numbers, but the
average ratio for each is nearly identical (average
ratio congruent = 0.733, average ratio for incongru-
ent = 0.744; for further details, see Table S2). Perfor-
mance was calculated as mean number of items
correct and as a Weber fraction (Halberda et al.,
2008) to facilitate comparison with previously pub-
lished research. However, the model implementing
Levenberg–Marquardt least squares fit used to cal-
culate Weber fractions did not provide a sufficient
fit with the fewer number of trials available within
congruency conditions (as indicated by whether the
model predicted a significant amount of variance,
p < .05). Furthermore, a growing body of literature
suggests that mean accuracy is strongly correlated
with and possibly more reliable than ratio-depen-
dent metrics such as the Weber fraction (Gilmore,
Attridge, & Inglis, 2011; Inglis & Gilmore, 2014),
which is true even in the case of congruency com-
parisons (Sz}ucs, Devine, et al., 2013; Sz}ucs, Nobes,
et al., 2013). Therefore, in this study, mean accuracy
percentages were used instead of Weber fractions
to index performance on each of our number com-
parison tasks.

Working Memory

The backward Corsi block-tapping test (Corsi,
1972) provided a measure of visuospatial working
memory. In this computerized task, children first
viewed squares that lit up in a sequence on the
screen, and then the students were asked to tap the
squares in the reverse order in which they lit up.
The task consisted of 16 total possible trials, includ-
ing two practice trials. The student was given two
attempts to correctly repeat the reverse sequence
per sequence length, increasing in span from 2 to 8
across the task. If the student correctly answered at
least 1 of the 2 attempts correctly, the student then
proceeded on to the longer (more difficult)

Figure 1. Nonsymbolic numerical magnitude comparison stimuli
and paradigm timing. (A) Incongruent trial example of ratio 0.67
(smaller number dot set/larger number dot set, 6/9 = 0.67). (B)
Congruent trial example, also of ratio 0.67.
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sequence. The score of interest was the highest span
with a correctly repeated sequence. For some chil-
dren without sixth-grade Corsi spans, 22 children
of n = 448, fifth-grade spans are utilized. For
details, see Appendix B.

Inhibitory Control and Task Switching

The hearts and flowers task (Wright & Diamond,
2014) was used as measure of students’ task switch-
ing and inhibitory control. In this task, the child
was first presented with a heart on either side of
the screen and instructed to press the button that
corresponds to the side of the screen with the heart.
This first block comprised 12 trials. In the second
block of trials (also 12 trials), the child was pre-
sented with flowers and asked to press the button
that is opposite the side of the flower. In the third
set of trials, the child was randomly presented with
either a heart or a flower and asked to follow the
rule that corresponds to hearts and flowers, respec-
tively. The third block comprised 48 trials. To index
executive function, we used mean accuracy from
the third, mixed-condition block of trials, and as
such, this single measure captures both task switch-
ing and inhibitory control (Diamond, 2014). One
child was not assessed at sixth grade for Hearts
and Flowers, but a score from seventh grade was
available. The same z-score method described above
was utilized to create a score for this child and z-
scores were utilized for all subsequent analyses.

Academic Achievement

Reading Achievement: Woodcock Johnson–III—Letter-
Word Identification

The Woodcock Johnson–III (WCJ–III; Woodcock,
McGrew, & Mather, 2001) is a standard assessment
of a range of skills, designed to be used with peo-
ple ages 2–90+. The letter-word identification
(LWID) subtest assesses children’s letter and sight
word identification ability with the correct pronun-
ciation. Items include identifying and pronouncing
letters and words presented to the child (e.g., “A”

or “dog”). Age-normed standard scores were calcu-
lated as an early measure of reading achievement
measured at the end of kindergarten and then con-
verted to percentile ranks.

Mathematics Achievement

WCJ–III Quantitative Concepts and Applied
Problems subtests were used as measures of

mathematics achievement during the early school
years (Pre-K–first grade) and KeyMath-3 (KM-3)
subscales of Numeration, Algebra, and Geometry
were used for the middle school time points (fifth–
seventh grade). Standard scores from each measure
were converted to percentile rank scores based on
the nationally normed mean and standard devia-
tions of the sample utilized for each respective stan-
dardized assessment. Percentile rank scores were
utilized for (a) achievement group creations based
on percentile rank threshold in the first analysis
and (b) the principal outcome variable of interest in
our multilevel regression analysis.

WCJ–III—Quantitative Concepts and Applied Prob-
lems. Quantitative Concepts and Applied Prob-
lems subtests were administered at the end of each
school year during Pre-K, kindergarten, and first
grade. Individually administered, Quantitative Con-
cepts has two parts and assesses students’ knowl-
edge of mathematical concepts, symbols, and
vocabulary, including numbers, shapes, and
sequences; it measures aspects of quantitative math-
ematics knowledge and recognition of patterns in a
series of numbers. The Applied Problems subtest is
an untimed verbal and picture-based measure of a
student’s ability to analyze and solve mathematics
problems, beginning with the application of basic
number concepts. At each early time point, age-
normed standard scores were calculated for each
subtest and averaged together to create a composite
measure of mathematics competence representing a
broad range of mathematics skills. These scores
were subsequently converted to percentile ranks.

KeyMath-3. The KM-3 Diagnostic Assessment
(Connolly, 2007) is a comprehensive, norm-refer-
enced measure of essential mathematical concepts
and skills. It was administered at the end of each
school year during fifth, sixth, and seventh grades.
We used three subscales out of the five subscales in
the Basic Concepts area. (a) Numeration: The
Numeration subtest measures an individual’s
understanding of whole and rational numbers. It
covers topics such as identifying, representing, com-
paring, and rounding one-, two-, and three-digit
numbers as well as fractions, decimal values, and
percentages. It also covers advanced numeration
concepts such as exponents, scientific notation, and
square roots. (b) Algebra: The Algebra subtest mea-
sures an individual’s understanding of prealgebraic
and algebraic concepts. It covers topics such as sort-
ing, classifying, and ordering by a variety of attri-
butes; recognizing and describing patterns and
functions; working with number sentences, opera-
tional properties, variables, expressions, equations,
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proportions, and functions; and representing mathe-
matical relations. (c) Geometry: The Geometry sub-
test measures an individual’s ability to analyze,
describe, compare, and classify two and three-
dimensional shapes. It also covers topics such as
spatial relations and reasoning, coordinates, sym-
metry, and geometric modeling. Scale scores in the
KM-3 are age normed to reflect population means
of 10 (SD = 3) for each subtest. We averaged scale
scores from the three subscales into a composite
measure (KM composite) as in previous analyses
involving the current sample (Price & Wilkey, 2017;
Rittle-Johnson, Fyfe, Hofer, & Farran, 2017). This
score was then converted to a percentile rank to
compose mathematics achievement groups across
measures of mathematics achievement in the early
grades (Pre-K-first grade) and late measures of
mathematics achievement (fifth grade to seventh
grade).

The relation between KM-3 scores and predictor
variables was nonlinear based on visual inspection
of scatter plots, so when conducting analyses that
assumed a linear relation (e.g., bivariate correlation,
partial correlation, or regression), models were fit
using a transformed outcome (i.e., cubed root) of
KM-3 percentile rank. A detailed exploration of the
untransformed achievement scores’ relation to pre-
dictor variables is detailed in Appendix C.

Analysis

To investigate group differences among DD, LA,
and TA groups on nonsymbolic comparison on
both congruent and incongruent trials, we con-
ducted a two-way (3 9 2), mixed effects analysis of
variance (ANOVA) with achievement group as a
between-subject factor, congruency condition of
nonsymbolic comparison as a within-subjects factor,
and accuracy rate on the nonsymbolic comparison
task at sixth grade as the dependent variable.
Levene’s tests were run for each ANOVA to ana-
lyze violations of homogeneity of variance that
often results from unequal sample sizes. When vio-
lated, Welch’s adjusted F was used for the ANOVA
and noted in the results. One-way post hoc t-tests
were conducted to examine simple main effects and
pairwise differences where appropriate. Bonferroni-
corrected p-values are reported to correct for multi-
ple comparisons for all subsequent analyses and to
ensure tests were robust against violations of homo-
geneity of variances between groups. Effect sizes
are reported as Hedge’s g, which accounts for
unequal group ns by weighting the pooled stan-
dard deviation according to group size, M1�M2

SDpooled;weighted
.

Because clustering of students within schools did
not account for a significant proportion of variation
in sixth-grade nonsymbolic number comparison
accuracy (q̂ = .009, p = .74), a multilevel modeling
approach to account for the clustering of students
within schools was not needed.

The second set of analyses used random effects
multilevel models to predict sixth-grade mathemat-
ics achievement from concurrent experimental mea-
sures. This analysis examined whether individual
differences in nonsymbolic number comparison per-
formance related to standardized mathematics
achievement across a wide range of achievement.
Specifically, we examined whether sixth graders’
accuracy on nonsymbolic number comparison for
incongruent and congruent trials predicted concur-
rent mathematics achievement for the full sample of
students (n = 448), and whether the relation chan-
ged when controlling for early reading achievement
and domain-general executive functioning.

Results

Task Effects

Nonsymbolic comparison task performance pro-
files were consistent with previous findings (e.g.,
Lyons, Nuerk, & Ansari, 2015), showing a signifi-
cant effect of ratio on mean accuracy for all trials [F
(6, 447) = 1,255.22, p < .001, partial g2 = .737], and
within congruency conditions [F(6, 447) = 339.01,
p < .001, partial g2 = .431 for congruent trials; F(6,
447) = 401.17, p < .001, partial g2 = .473 for incon-
gruent trials]. Furthermore, both mean accuracy
and Weber fraction were correlated with mathemat-
ics achievement at sixth grade (mean accuracy Pear-
son r(446) = .191, p < .001, 95% CI [.100, .278];
Weber fraction Pearson r(446) = �.244, p < .001),
95% CI [�.329, �.155], which is in line with a
recent meta-analysis reporting an average correla-
tion of r = .241 (k = 195) between nonsymbolic
comparison and a broad range of mathematics
achievement measures across multiple age groups
(Schneider et al., 2017). Mean accuracy and Weber
fractions were highly correlated (Pearson r
(446) = �.919, p < .001), 95% CI [�.932, �.903].

Achievement Group Comparison Results

Results of the two-way ANOVA indicated a
main effect of achievement group [F(2, 219) = 6.694,
p = .002, partial g2 = .058], a main effect of congru-
ency [F(1, 219) = 27.570, p < .001, partial g2 = .112]
whereby individuals were more accurate on
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congruent trials, and an interaction [F(2,
219) = 4.816, p = .009, partial g2 = .042]. To charac-
terize the main effect of achievement group, we
conducted between-subjects t-tests comparing accu-
racy on the combined congruent and incongruent
trials. Accuracy rate was 6.7 points [95% CI: 2.6,
10.9] lower for the DD group than the LA group [t
(32) = �3.293, Bonferroni adjusted (a/3) p = .003,
unadjusted p < .001, Hedge’s g = 1.182] and 4.3
points [95% CI: 2.0, 6.5] lower for the DD group
than the TA group [t(208) = �3.761, Bonferroni
adjusted (a/3) p = .002, unadjusted p < .001,
Hedge’s g = 0.847]. There was no significant differ-
ence between the LA and TA groups [t
(198) = 1.619, Bonferroni adjusted (a/3) p = .161,
unadjusted p = .053, Hedge’s g = 0.482].

The Effect of Congruency

Pairwise comparisons were conducted to charac-
terize the simple effect of congruency within
achievement groups. There was an effect of congru-
ency in the DD and TA groups whereby, on aver-
age, the DD group accuracy rate was 25.2 points
[95% CI: 16.6, 33.8] lower for incongruent compared
to congruent trials [t(21) = 6.076, Bonferroni
adjusted (a/3) p < .001, unadjusted p < .001,
Hedge’s g = 2.203] and the accuracy rate for the TA
group was 10.7 points [95% CI: 7.6, 13.8] lower for
incongruent compared to congruent trials [t
(21) = 6.795, Bonferroni adjusted (a/3) p < .001,
unadjusted p < .001, Hedge’s g = 0.844]. However,
there was no effect of congruency in the LA group
[t(11) = 0.716, Bonferroni adjusted (a/3) p = .732,
unadjusted p = .244, Hedge’s g = 0.359] (see Fig-
ure 2 and Table 1 for means).

The Effect of Achievement Group

To characterize the simple effects of achievement
group, one-way analyses of variance (ANOVAs)
were conducted within congruency conditions, fol-
lowed by pairwise comparisons of achievement
groups. Results from the ANOVA on accuracy for
congruent trials showed no effect of achievement
group [F(2, 219) = 0.476, p = .622, g2 = .004] (Fig-
ure 2). Levene’s test of equality of variances
showed no significant differences in variance across
groups for mean accuracy of congruent trials
(Levene’s statistic = 0.383, p = .682).

In contrast, results from the ANOVA on incon-
gruent trials showed a significant effect of achieve-
ment group on accuracy Welch’s [F(2,
21.45) = 8.345, p = .002, g2 = .070]. Levene’s test

indicated significant differences in variance across
groups for mean accuracy of incongruent trials
(Levene’s statistic = 4.317, p = .014); however, vari-
ance only differed between groups by a factor of
2.56 at most, so Welch’s adjusted F was used for
the ANOVA. After adjusting for multiple compar-
isons, post hoc tests of incongruent trials indicated
that accuracy rate for the DD group was 17.3 points
[95% CI: 5.2, 29.4] lower than the LA group [t
(32) = �2.916, Bonferroni adjusted (a/3) p = .002,
unadjusted p = .005, Hedge’s g = 1.046] and DD
accuracy rate was 12.1 points [95% CI: 5.9, 18.3]
lower than the TA group [t(208) = �3.862, Bonfer-
roni adjusted (a/3) p < .001, unadjusted p < .001,
Hedge’s g = 0.870]. There was no difference
between LA and TA groups [t(198) = 1.197, Bonfer-
roni adjusted (a/3) p = .350, unadjusted p = .117,
Hedge’s g = 0.356, mean difference = 5.2 points,
95% CI: �3.3, 13.7].

To further investigate achievement group differ-
ences after controlling for domain-general factors,
analyses were repeated as a one-way analysis of
covariance (ANCOVA) with the covariates of max
span achieved on the backward Corsi, mean accu-
racy during mixed trials of the hearts and flowers
task, age at time of testing, and percentile rank on
the WCJ–III LWID at the end of kindergarten. After
controlling for these factors, there was still a signifi-
cant effect of achievement group for accuracy on
incongruent trials [F(2, 215) = 4.658, p = .010, par-
tial g2 = .042]. After adjusting for multiple compar-
isons, covariate adjusted means were 16.6 points
[95% CI: 3.3, 29.9] lower for the DD than the LA
group [Bonferroni adjusted (a/3) p = .015, unad-
justed p = .005, Hedge’s g = 0.823] and 10.0 points

Figure 2. Nonsymbolic number comparison accuracy rates by
achievement group. DD = developmental dyscalculia; LA = low
achieving; TA = typically achieving. Error bars represent stan-
dard errors. p-Values are indicated for differences in accuracy
between congruent and incongruent trials (***p < .001).
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[95% CI: 1.0, 21.0] lower for the DD group than the
TA group [Bonferroni adjusted (a/3) p = .045,
unadjusted p = .002, Hedge’s g = 0.823]. There was
no significant difference between the LA and TA
groups [Bonferroni adjusted (a/3) p = .231, unad-
justed p = .077, Hedge’s g = 0.585]. These results
replicate the pattern observed in the ANOVA.

In sum, all ANOVAs and ANCOVAs conducted
show the same pattern of results whereby: (a) no
group differences are observed for congruent trials
of the comparison task, (b) the DD group performs
significantly below LA and TA groups on incongru-
ent trials even when controlling for other cognitive
factors and early reading achievement, and (c) no
group differences are present between LA and TA
groups on incongruent trials.

Full Range of Achievement Results

For descriptive statistics of the full sample, see
Table 2. For bivariate correlations among measures,
see Table S3. Of note is a moderate, negative bivari-
ate correlation between accuracy rates for congruent
and incongruent trials, r(446) = �.447, p < .001, 95%
CI [�.518, �.369]; see Figure S1 for scatter plot. To
investigate potential differences among subtests of
the KM-3 and their correlations with performance in
the nonsymbolic number comparison task, Pearson-r
values were converted to z values and then com-
pared with a two-tailed z-test. Results indicated
there were no significant differences among any cor-
relations according to KM-3 subtests (all ps > .435,
see Table S4 for details) and all further analyses were
conducted on KM-3 composite scores.

Multilevel Regression Model Predicting Mathematics
Achievement

Multilevel modeling accounts for the clustering
of students within schools, as approximately 23% of
the variation in sixth-grade mathematics achieve-
ment was due to school membership (q̂ = .225,
p < .0001). Equation 1 illustrates the modeling
approach, in which MATHij represents sixth-grade
mathematics achievement for each student i in
school j. The predictors INCONij and CONij repre-
sent student-level accuracy on nonsymbolic number
comparison for incongruent and congruent trials,
respectively; HAFij represents student-level stan-
dardized scores on the hearts and flowers task;
CORSIij represents student-level standardized back-
ward Corsi max span scores; READij represents stu-
dent-level age-normed standard scores on the
LWID test; and Xij represents a vector of potential

student-level covariates, such as gender or age at
testing. Due to nonlinearity in the relation between
mathematics scores and the predictors, models were
fit using a transformed outcome (i.e., cubed root).

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MATHij

q
¼ b0 þ b1INCONij þ b2CONij

þ b3HAFij þ b4CORSIij þ b5READij

þ b6X ij þ ðeij þ ujÞ:
ð1Þ

The bivariate correlations of the transformed
achievement variable are presented in Figure 3 with
a plot of nonsymbolic number comparison perfor-
mance by congruency on achievement.

Table 3 presents parameter estimates, standard
errors, significance levels, random effects, and
goodness-of-fit statistics for a taxonomy of fitted
models describing the relation between mathemat-
ics achievement and nonsymbolic number compar-
ison, domain-general executive functioning, early
reading achievement, and age at testing in sixth
grade. The first model (i.e., M1) displays the grand
mean of sixth-grade mathematics achievement,
across all students and schools, and the intraclass
correlation (q̂ = .225, p < .0001) that motivates the

Table 2
Descriptive Statistics for Experimental and Standardized Measures for
Full Sample

Entire sample (n = 448,
250 female)

M SD Range

Age (years), sixth grade 12.0 0.32 11.4–13.4
Nonsymbolic comparison (accuracy,
%)

74.8 5.48 48.6–91.4

Nonsymbolic comparison (congruent
accuracy, %)

76.6 11.2 36.4–100

Nonsymbolic comparison
(incongruent accuracy, %)

63.1 14.5 22.2–94.4

Nonsymbolic comparison (Weber
fraction, w)

0.29 0.10 0.10–1.42

Backward Corsi (max span)a 4.81 1.22 2–8
Hearts and flowers (accuracy, %)a 73.4 14.5 35–100
Letter-word identification—WCJ–III
(K, percentile rank)

109.7 12.7 73–144

Math achievement—KM-3 (sixth
grade, percentile rank)

27.0 23.1 0.5–92.5

Note. WCJ–III = Woodcock Johnson–III; KM-3 = KeyMath-3.
aRaw scores reported here for year available. See Sections Work-
ing Memory, Inhibitory Control and Task Switching, and Appendix C
for a detailed description of scores used for analyses.
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multilevel modeling approach. Model M2 shows
the relations between accuracy on congruent and
incongruent conditions of the nonsymbolic number
comparison task and transformed sixth-grade math-
ematics achievement. There is a statistically signifi-
cant relation between accuracy on incongruent
nonsymbolic number comparison and transformed
sixth-grade mathematics achievement (z = 4.88,
p < .0001), but accuracy on congruent trials is not a
statistically significant predictor of mathematics
achievement (z = 1.16, p = .25). Accordingly, accu-
racy on congruent trials was excluded from subse-
quent models.

Subsequent models (M3–M5) show that the rela-
tion between accuracy on incongruent trials of the
nonsymbolic number comparison task and trans-
formed sixth-grade mathematics achievement per-
sists after controlling for additional predictors of
mathematics achievement. Model M3 shows the
relation between accuracy on incongruent nonsym-
bolic number comparison trials and transformed
mathematics achievement, controlling for domain-
general executive functioning. Hearts and Flowers
and backward Corsi performance have a statisti-
cally significant relation with mathematics achieve-
ment (z = 7.71, p < .0001 and z = 7.12, p < .0001,
respectively), controlling for nonsymbolic number
comparison. Parameter estimates and statistical sig-
nificance of relations remain stable when control-
ling for reading performance in kindergarten (see
Table 3, M4) and age of mathematics testing in
sixth grade (see Table 3, M5), though the

magnitudes decrease slightly. Additional models
were fit testing demographic variables (e.g., gender)
and interaction terms among the nonsymbolic com-
parison and executive function predictors; however,
none were statistically significant (p’s ranged from
.06 to .98). Furthermore, we conducted a sensitivity
analysis to examine whether students with DD may
be driving the relationship between performance on
incongruent trials and mathematics achievement.
To do so, we refit model M5 without the DD sub-
group (n = 22). Results were unchanged. Taken
together, the analysis suggests that student perfor-
mance on incongruent trials of nonsymbolic num-
ber comparison is predictive of concurrent
mathematics achievement, above and beyond non-
numerical, domain-general executive functioning,
early reading achievement, and age at testing in
sixth grade. For detailed explanation of the model
fit, see Appendix C.

Discussion

This study investigated the relation among ANS
function, executive function, and mathematics
achievement by examining performance on the non-
symbolic number comparison task, separately for
congruent and incongruent trials, while controlling
for multiple components of executive function mea-
sured in non-numerical contexts. We investigated
this relation first as it relates to group differences
among DD, LA, and TA students and then as a

Figure 3. Nonsymbolic number comparison accuracy rates split by (left) congruent and (right) incongruent trials including all individu-
als from the full sample plotted against 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MATHij
p

, the outcome variable of Equation 1 below, cube root of the composite math
achievement percentile rank. DD = developmental dyscalculia; LA = low achieving; TA = typically achieving; pr = percentile rank.
Bivariate correlations of the full sample are presented in the bottom corner of each panel (***p < .001). Orange diamonds represent
individuals who did not fit our selection criteria for stable achievement grouping based on pre-K to seventh-grade achievement.
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factor related to mathematics across a full range of
achievement. Results indicated that a dynamic
interplay of the ANS and executive function mecha-
nisms, beyond either mechanism alone, represents a
deficit specific to DD and is also related to mathe-
matics across a full range of mathematics achieve-
ment. Together, the current findings suggest that a
focus on ANS alone is insufficient to explain the
relation between basic number processing and
mathematics outcomes. Therefore, we suggest that
our results point to a need to reframe existing mod-
els of the relation between number processing and
mathematics competence to include the relation
between executive function mechanisms and magni-
tude processing, and to move beyond single mecha-
nism explanations more generally.

Achievement Group Comparison

In the first analysis, we compared accuracy rates
in the nonsymbolic comparison task across three
mathematics achievement levels (i.e., DD, LA, and
TA) defined through 6 years of consistent achieve-
ment, including the first 3 years of school entry
(pre-K-first grade) and 3 later years of entry to mid-
dle school (fifth–seventh grade). Our results showed
that accuracy on incongruent trials, and not congru-
ent trials, was significantly lower for DD (defined
at two different thresholds) compared to LA and
TA groups, even after controlling for early reading
achievement, visuospatial working, inhibitory con-
trol, and task shifting. LA and TA groups, on the
other hand, did not differ from one another, thus
supporting the hypothesis that an impairment in
the interaction between executive function and the
ANS is characteristic of individuals with DD.

Explanations of the link between ANS and math-
ematics achievement that involve a dynamic inter-
action between the ANS and executive function
have considerable support from a large body of
research linking low mathematics performance with
various executive function impairments. These
include associations between low mathematics
achievement and inhibitory control (Blair & Razza,
2007; Espy et al., 2004; Sz}ucs, Devine, et al., 2013;
Sz}ucs, Nobes, et al., 2013), spatial processing
(Rourke & Conway, 1997), verbal and visuospatial
working memory (Bull & Lee, 2014; Bull & Scerif,
2001; Geary, 2004; Lee & Bull, 2016; Sz}ucs, Devine,
et al., 2013; Sz}ucs, Nobes, et al., 2013), set shifting
(Willcutt et al., 2013), sustained visual attention
(Anobile, Stievano, & Burr, 2013), and inattentive
behaviors (Fias et al., 2013; Shalev et al., 1995). Fur-
thermore, DD has a high rate of comorbidity with

attention-deficit/hyperactivity disorder (Czamara
et al., 2013). Although the link is often made
between general measures of executive function
and mathematics achievement, there is evidence
that the relation is specific to measures of executive
function involving numerically relevant informa-
tion. For example, Siegel and Ryan (1989) found
that individuals with DD have impairments of
working memory related to processing numerical
information and not language. Experimental studies
have also demonstrated a distinction between exec-
utive function to numerical and non-numerical con-
tent. Ashkenazi et al. (2009) found that individuals
with DD had more difficulty recruiting attention to
numerical information but not non-numerical infor-
mation under heightened cognitive load compared
to TD peers. This array of findings has led some to
suggest that DD may involve a domain-specific
executive function problem (e.g., Bull & Scerif,
2001). In other words, individuals with DD may
not have a generally impaired ANS system, but
rather have difficulty working with numerical mag-
nitudes under additional executive function
demands. Results from this study showing mathe-
matics achievement group differences in nonsym-
bolic comparison performance only during
incongruent trials, after controlling for non-numeri-
cal executive function, lend further support to this
hypothesis. Whether this deficit is driven by a fail-
ure to upregulate numerical information above
competing information as attention shifting would
require, or perhaps a failure to disengage attention
from non-numerical information by inhibiting inter-
ference from irrelevant stimulus dimensions
remains an open empirical question. As the DD
group’s average performance during incongruent
trials is around chance, little can be inferred with
about strategy during these trials.

This study’s results contrast with some previous
studies using an alternative method for controlling
visual parameters of dot stimuli, which have not
found an effect of congruency on response behav-
iors (Odic, Libertus, Feigenson, & Halberda, 2013;
Odic et al., 2014). However, in those studies, the
effect of congruency may be confounded by the fact
that degree of visual congruency (and incongru-
ency) is linearly related to trial ratio. This means
that in difficult ratio trials, which capture the most
variance related to individual differences in ANS
acuity, each dot set is very similar in terms of sur-
face area, thus decreasing the likelihood of finding
a congruency effect. Although this method may be
appropriate for measurement of general ANS acu-
ity, the effects of congruency are difficult to
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separate from the effects of numerical ratio, because
the two are linked so tightly. This study uses a
method of controlling congruency that is more bal-
anced across ratios and controls for a greater num-
ber of stimulus properties beyond dot size and
surface area (for a detailed discussion, see Clayton
et al., 2015). Therefore, the effects of congruency
and ANS function are more clearly disentangled in
this study.

One unexpected result from the first, group-wise
analysis is that DD and TA groups showed congru-
ency effects, as expected, but LA children did not.
Despite this lack of a congruency effect in the cur-
rent findings for this achievement group, we cau-
tion against any strong interpretation of this result.
There is a trend in the expected direction for each
of the LA children groupings (10th percentile and
6.7th percentiles cutoffs), in which children are
more accurate on congruent trials than incongruent
trials. Despite the lack of a significant effect, the
effect sizes are relatively large (Hedge’s g = 0.359
and Hedge’s g = 0.71), and mean differences are 6
accuracy points and 10 accuracy points for each
sample, respectively. It is likely that the absence of
a statistically significant congruency effect for LA
children is due to high variance in accuracy on
incongruent trials and a lack of power for this com-
parison.

Full Range of Achievement

In the second analysis, we examined whether
sixth graders’ accuracy on nonsymbolic number
comparison for incongruent and congruent trials
predicted concurrent mathematics achievement for
the full sample of students and whether the relation
changed when controlling for early reading achieve-
ment and non-numerical, domain-general executive
functioning. The sample for this analysis included a
wide range of mathematics achievement levels that
included all participants from the first analysis and
participants in the broader study that did not con-
sistently achieve in the same level year to year.
Similar to the logic of the first analysis, if number-
specific executive function is related to individual
differences in mathematics achievement across a
wide range of achievement, performance on incon-
gruent trials should predict mathematics achieve-
ment beyond what can be accounted for by
congruent trials and early reading achievement,
visuospatial working memory, inhibitory control,
and task shifting. Indeed, results showed that accu-
racy on incongruent trials predicted concurrent
mathematics achievement even after controlling for

early reading achievement, visuospatial working
memory, inhibitory control, and task shifting, thus
supporting the hypothesis that number-specific
executive function relates to individual differences
in mathematics achievement across a wide range of
achievement levels. Furthermore, the relation
remained unchanged when we excluded individu-
als with DD from the regression. These findings
build on previous research that has shown other
number-specific measures of executive function
relate to mathematics achievement in TD and high
achieving groups. For example, Dark and Benbow
(Dark & Benbow, 1994) found that working mem-
ory tasks with numerical stimuli were more closely
related to mathematical precocity than non-numeri-
cal stimuli across a range of tasks in adults. Simi-
larly, studies of children have demonstrated that
inhibitory control and working memory of numeri-
cal information accounts for significant variance in
individual differences in mathematics ability and
early numeracy beyond similar non-numerical mea-
sures of executive function (Bull & Scerif, 2001;
Merkley, Thompson, & Scerif, 2016).

Interestingly, bivariate correlations indicated that
children with high accuracy on incongruent trials
tended to have low accuracy on congruent trials
(and vice versa), even though congruent trials were
not related to mathematics achievement. This may
be important for two reasons. First, if only incon-
gruent trials are related to mathematics achieve-
ment, researchers may be tempted to design
measures consisting exclusively of incongruent tri-
als. However, this inverse relation may indicate that
incongruent trials are inherently related to congru-
ent trials such that removing congruent trials would
change the nature of the task demands for incon-
gruent trials. Second, speculation about inhibitory
control has dominated the conversation about the
cognitive mechanisms underlying the difference
between incongruent trials and congruent trials of
the nonsymbolic comparison task (Cragg et al.,
2017; Gilmore et al., 2015). Although inhibitory con-
trol may be a factor, the inverse correlation between
congruency conditions may indicate that some indi-
viduals are unable to switch between strategies that
capitalize on visual cues during congruent trials
and ignore these cues otherwise. In addition to
working memory and inhibitory control, task shift-
ing may contribute to differences in performance
between incongruent and congruent trials. Third,
this inverse correlation is somewhat consistent with
a developmental account recently suggested by
Piazza, De Feo, Panzeri, and Dehaene (2018),
whereby development and education both correlate
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with an increased ability to filter our irrelevant cues
in incongruent number comparison trials, similar to
those in this study. In contrast, performance on
congruent trials dropped or remained the same
with increased education and age, suggesting there
was not a generalized increase in acuity of number
perception. Piazza et al.’s developmental findings
suggests that better performers on incongruent tri-
als may not benefit as much from congruent visual
cues, which may explain this inverse correlation.

Given recent work demonstrating the contribu-
tion of numerosity discrimination to math achieve-
ment compared to non-numerical bias (Starr et al.,
2017), we did expect to see a relation, albeit weaker,
between mathematics achievement and accuracy
rate on congruent trials. However, in this study,
accuracy on congruent trials was unrelated to math-
ematics achievement, either as a factor distinguish-
ing between achievement groups or as a predictor
of mathematics achievement. This was true even
before controlling for other academic or cognitive
factors. Furthermore, the magnitude of this relation
in both analyses was close to zero, showing no
trend in the expected direction. This calls into ques-
tion whether ANS function alone, not measured
under high executive function demands, is an
important factor related to DD and mathematics
achievement more generally. Studies showing no
relation between nonsymbolic number comparison
performance and math achievement after control-
ling for executive function have argued this point.
For example, in a large sample of TD children,
Sz}ucs, Devine, Soltesz, Nobes, and Gabriel (2014)
found that after controlling for other executive
function measures such as dot matrices, visuospa-
tial working memory, and the trail-making task,
nonsymbolic comparison did not significantly relate
to mathematics achievement. Interestingly, in that
study, sustained visual attention was the best corre-
late of ANS acuity, which may further indicate that
attention mechanisms and ANS mechanisms are
integrally related.

Previous neuroimaging research has shown that
congruent and incongruent trials of the nonsym-
bolic number comparison task recruit different neu-
ral mechanisms, with incongruent trials recruiting
large portions of the frontoparietal attention net-
work (Leibovich, Vogel, Henik, & Ansari, 2016;
Wilkey, Barone, Mazzocco, Vogel, & Price, 2017).
Recruitment of additional neurocognitive mecha-
nisms during incongruent trials may be an integral
component of the previously assumed direct rela-
tion between ANS and mathematics achievement in
studies of mathematics learning disability, but also

across the full range of achievement. Supporting
this interpretation, recent neuroimaging evidence
from Wilkey and Price (in press) shows that indi-
vidual differences in neural activity of inferior fron-
tal brain regions, indexing the numerical
congruency effect in the nonsymbolic comparison
task, predicted mathematics achievement in a TD
sample of third- and fourth-grade children. This
relation held even after controlling for neural activ-
ity in a Flanker task and domain-general cognitive
factors. In contrast, individual differences in the
ratio effect (a neural metric of numerical acuity) did
not relate to mathematics, including activity in
expected posterior parietal regions. This finding
underscores the importance of the neurocognitive
mechanisms that interact with magnitude process-
ing mechanisms for mathematics competence, and
again speaks to the need to move beyond a single
mechanism explanation of foundational competen-
cies for mathematics development.

Limitations and Future Directions

Several factors should be taken into account
when interpreting the results of this study. First,
participants were recruited from an urban public
school system and were mostly from low-income
households. Low household income often impedes
access to high-quality early mathematics experiences
(Ramani & Siegler, 2008), so factors driving the rela-
tion between nonsymbolic comparison and mathe-
matics achievement may differ across students with
differing household incomes. Furthermore, the rela-
tion between nonsymbolic comparison and mathe-
matics achievement in low-income samples has been
reportedly lower than middle- and high-income
samples (Fuhs, Kelley, O’Rear, & Villano, 2016; Fuhs
& McNeil, 2013). However, effect sizes of the rela-
tion between nonsymbolic comparison and mathe-
matics achievement from this study are in line with
previous meta-analyses (Chen & Li, 2014; Schneider
et al., 2017). Additionally, the lack of relation
between mathematics achievement and congruent
trials, and significant relation between mathematics
achievement and incongruent trials, has been previ-
ously reported in low-income (Fuhs & McNeil,
2013) and middle-to-high income individuals (Keller
& Libertus, 2015). Furthermore, Price and Wilkey
(2017) showed that the mediating relation among
nonsymbolic comparison accuracy rates and mathe-
matics achievement in the same group of children
as this study follows the same patterns as previ-
ously reported literature from wider socioeconomic
status samples (Lyons & Beilock, 2011).
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Second, alternative explanations of the current
results are possible. For example, rather than our
hypothesis about domain-specific executive func-
tion, the current results could indicate that individ-
uals who utilize an appropriate strategy for
incongruent trials, whether consciously or not, are
better at mathematics. If framed as a task strategy,
then strategy selection does not necessarily equate
to number-specific executive function. Another
alternative is that individual differences in task per-
formance are based not on cognitive efficiencies but
rather a predisposition to focus on one aspect of the
visual stimuli. A deficit of number-specific execu-
tive function is different than the failure to utilize
it. Prior research has documented that individuals
with a tendency to spontaneously focus on exact
quantities have higher arithmetic abilities (Batche-
lor, Inglis, & Gilmore, 2015; Hannula, Lepola, &
Lehtinen, 2010). Recently, this line of research has
been expanded to incorporate spontaneous orienta-
tion to conflicting or irrelevant dimensions of non-
numerical magnitude similar to those of this study
(Viarouge et al., 2017). Research on the underlying
neurocognitive mechanisms can also help to distill
the root of the differences observed in the current
results.

A third factor to consider, specifically in regard
to the group comparison results, is that choosing to
identify a DD group based on consistent, low math-
ematics achievement over time has both benefits
and limitations for interpreting results. In our meth-
ods, we make an argument that DD is likely
heterogenous in nature and that identifying a “pure
dyscalculic” group via the use of an IQ-math
achievement discrepancy criteria results in the
exclusion of individuals with DD that do not show
a discrepancy due to the high comorbidity of other
developmental deficits that would affect IQ or
another achievement measure such as reading. With
this analytic decision comes the limitation that
some individuals within the DD group may per-
form poorly in mathematics testing due to a more
globalized cognitive deficit (e.g., IQ) rather than a
specific math deficit and, further, that this global
deficit was not adequately controlled for when
covarying out reading ability and executive func-
tion. One solution suggested by Sz}ucs (2016) may
be to focus more on positioning individuals in a
multidimensional parametric space that identifies
specific cognitive functions related to mathematical
performance. The current results suggest that num-
ber-specific executive function is likely to be one
such cognitive function.

Fourth, this study makes the case that number-
specific executive function may be impaired in DD
and also related to mathematics achievement across
a wide achievement range. This conclusion is based
on the idea that a relation between two variables
(i.e., math achievement and performance on incon-
gruent trials of the number comparison task) sur-
vives after controlling for individual differences in
other cognitive factors (i.e., executive function in a
non-numerical context). In this type of analysis, the
conclusion is only as strong as the validity and
specificity of control variables. In this study, only
two variables are used as control measures for exec-
utive function, and therefore, caution is warranted
when considering how completely our variables
controlled for all aspects of executive function unre-
lated to number.

Conclusion

In sum, the two sets of analyses presented here
suggest that performance on incongruent trials
alone relates to the presence of severe mathematics
learning deficits as well as individual differences
in mathematics across a wide range of achieve-
ment, even when excluding DD individuals.
Results suggest that number-specific executive
function is a unique predictor of mathematics
achievement beyond measures that target the ANS
or executive function independently. In order to
understand how the intersection of these multiple
cognitive mechanisms relates to the acquisition of
mathematics skills, future studies should move
from a domain-specific versus domain-general
approach to experiments that deconstruct this
framework. In so doing, future hypotheses can
more closely address the integration of cognitive
mechanisms required to complete a complex task
such as mathematical thought. Furthermore, the
current findings do little to explain the relation
between nonsymbolic number perception and sym-
bolic number. Understanding their relation may
further explain why number-specific executive
function relates to symbolic mathematics. This type
of investigation may lead to an enhanced under-
standing of what type of training or remediation
of a specific skill set provides the most potential
for transfer to improved mathematics achievement
more broadly. Given that this study provides sup-
port for an integral relation between a “domain-
general” mechanism with a number-specific one, a
training that seeks to leverage this intersection
should be explored.
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Appendix A
Detailed Results From 6.7th Percentile Cutoff

Sample Achievement Group Analysis

To make current results more easily comparable
to previous literature that used differing cutoff
thresholds for determining DD groups, this study
also examined whether there were differences
between two commonly used thresholds for deter-
mining a dyscalculic sample. This threshold has
varied widely across studies, and has likely con-
tributed to disagreement among findings (Maz-
zocco & Myers, 2003). Another commonly used
threshold is mathematics achievement scores
1.5 SDs below the nationally normed means, which
is equivalent to performance below the 6.7th per-
centile (Kaufmann et al., 2013; Price et al., 2007;
Rotzer et al., 2009). This threshold resulted in the
following achievement groupings: DD, ≤ 6.7th per-
centile; LA, 6.7th–25th percentile; TA, 25th–95th
percentile. Again, individuals were placed in
achievement groups if their mathematics achieve-
ment scores were consistently in the designated
achievement range at two of the three early assess-
ments (pre-K-first grade) AND two of the three
later assessments (fifth–seventh grades). Given
these criteria, 221 children fit into consistent
achievement groups across early and later assess-
ment periods, 11 children met the criteria for DD,
22 for LA, and the same 188 children were TA.
Descriptive statistics in Table A1.

Results

As in the first achievement group sample, there
were no differences according to gender distribu-
tion percentages of mathematics achievement

groups with the 6.7th percentile cutoff grouping,
Pearson v2(2) = 4.045, p = .132, Cramer’s V = .132,
nor in mathematics achievement, t(446) = 1.182,
p = .238, Cohen’s d = 0.112, or in nonsymbolic com-
parison accuracy, t(446) = 0.780, p = .436, Cohen’s
d = 0.074, at sixth grade, the outcome year of inter-
est for the second set of primary analyses.

Detailed Results From 6.7th Percentile Cutoff Sample
Achievement Group Analysis

For the 6.7th percentile cutoff sample, there was
an effect of congruency in the DD and TA groups [t
(10) = 3.855, p = .003, Cohen’s d = 1.968 for DD; t
(187) = 6.795, p < .001, Cohen’s d = 0.844 for TA],
but not in the LA group [t(21) = 0.705, p = .068,
Cohen’s d = 0.705]. The right panel of Figure A1
shows the congruency effect for DD and TA groups
in the 6.7 percentile cutoff sample. Levene’s test of
equality of variances showed no significant differ-
ences in variance across groups for mean accuracy of
congruent trials or incongruent trials. Results from
the ANOVA showed that there was no effect of
achievement group on number comparison perfor-
mance for congruent trials [F(2, 218) = 0.389,
p = .679, g2 = .003], but there was a significant effect
of achievement group on number comparison perfor-
mance for incongruent trials [F(2, 218) = 4.947,
p = .008, g2 = .043]. After adjusting for multiple
comparisons, one-tailed post hoc tests indicated
lower accuracy rates for DD than TA children (Bon-
ferroni adjusted p = .003, Hedge’s g = 0.997), lower
accuracy rates for DD than LA children (Bonferroni
adjusted p = .011, Hedge’s g = 0.821), and no differ-
ence between LA and TA groups (Bonferroni
adjusted p = .500, Hedge’s g = 0.028).

Results from the ANCOVAs with the covariates
of mean accuracy on the Hearts and Flowers mixed
trials, max span on the backward Corsi block-tap-
ping test, age at Grade 6 testing, and letter-word
identification at the end of kindergarten indicated
there was no effect of achievement group on num-
ber comparison performance for congruent trials [F
(2, 214) = 0.208, p = .812, partial g2 = .002], but
there was a significant effect for incongruent trials
[F(2, 214) = 3.356, p = .037, partial g2 = .030]. After
adjusting for multiple comparisons, one-tailed post
hoc tests indicated lower accuracy rates for DD
than TA children (Bonferroni adjusted p = .034,
Hedge’s g = 0.895) lower accuracy rates for DD
than LA (Bonferroni adjusted p = .017, Hedge’s
g = 0.893) and no difference between LA and TA
groups (Bonferroni adjusted p = .500, Hedge’s
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g = 0.112). These results replicate the pattern
observed in the ANOVA.

The same ANOVA’s and ANCOVAs were con-
ducted on groups formed with the 6.7th percentile
cutoff threshold for both congruent and incongru-
ent trials and results fit the same pattern as those of
the 10th percentile cutoff. In sum, all ANOVA’s
and ANCOVAs conducted on both the 10th and
6.7th percentile cut-off samples show the same pat-
tern of results whereby: (a) no group differences are
observed for congruent trials of the nonsymbolic
comparison task, (b) the DD group performs signifi-
cantly below LA and TA groups on incongruent

trials even when controlling for other cognitive fac-
tors and early reading achievement, and (c) no
group differences are present between LA and TA
groups on incongruent trials.

Appendix B
Details of Missing Sixth-Grade Corsi Span Scores

At the sixth-grade assessment, 22 children (of
n = 448) did not proceed from instruction in the
backward Corsi to successful completion of a trial,
indicating noncompliance with the task or a failure

Table A1
Descriptive Statistics for Experimental and Standardized Measures

10th Percentile cutoff
sample (n = 222, 116

female)

6.7th Percentile cutoff
sample (n = 221, 115

female)
Entire sample (n = 448,

250 female)

M SD Range M SD Range M SD Range

Age (years), pre-K 5.1 0.3 4.5–6.4 5.1 0.3 4.5–6.4
Age (years), sixth grade 12.0 0.3 11.4–13.4 12.0 0.3 11.4–13.4 12.0 .32 11.4–13.4
Nonsymbolic comparison (accuracy, %) 75.5 5.29 58.6–91.4 75.6 5.3 58.6–91.4 74.8 5.48 48.6–91.4
Backward Corsi (max span)a 5.1 1.2 2–8 5.2 1.1 2–8 4.81 1.22 2–8
Hearts and flowers (accuracy, %)a 76.4 14.4 40–100 76.8 13.9 44–100 73.4 14.5 35–100
Letter-word identification—WCJ–III (K, percentile rank) 111.8 14.1 73–144 111.8 14.2 73–144 109.7 12.7 73–144
Math achievement—WCJ–III (pre-K, percentile rank) 51.3 24.9 1.0–95.0 52.4 23.8 1.0–95.0
Math achievement—WCJ–III (K, percentile rank) 52.1 24.7 0.0–93.0 52.7 23.8 0.0–93.0
Math achievement—WCJ–III (first grade, percentile rank) 48.1 24.6 0.4–95.5 48.6 24.1 0.4–95.5
Math achievement—KM-3 (fifth grade, percentile rank) 39.2 23.5 0.5–96.2 39.6 23.1 0.7–96.2
Math achievement—KM-3 (sixth grade, percentile rank) 42.1 22.7 0.5–92.5 42.4 22.3 1.0–92.5 27.0 23.1 0.5–92.5
Math achievement—KM-3 (seventh grade, percentile
rank)

42.6 22.9 0.5–94.1 42.9 22.5 0.5–94.1

Note. WCJ–III = Woodcock Johnson–III; KM-3 = KeyMath-3.
aRaw scores reported here for year available. See sections 2.4.2 and 2.4.3 for a detailed description of scores used for analyses.

Figure A1. Nonsymbolic number comparison accuracy rates for the sample with developmental dyscalculia (DD) defined as achieve-
ment below the 10th percentile (left) and 6.7th percentile (right) split by congruency. LA = low achieving. TA = typically achieving.
Error bars represent standard errors. p-Values are indicated for differences in accuracy between congruent and incongruent trials
(***p < .001).
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to understand instructions. Scores on outcome mea-
sures and covariates of interest for these children
were different, on average, from those children
who successfully completed the task (nonsymbolic
accuracy t(446) = 3.728, p < .001, Cohen’s d = 0.794;
Hearts and Flowers mean accuracy t(446) = 3.508,
p < .001, Cohen’s d = 0.716; sixth-grade mathemat-
ics achievement t(446) = 2.587, p = .010, Cohen’s
d = 0.613). Therefore, to avoid nonrandom missing
data and include these children in our analyses,
backward Corsi max span from the fifth grade was
used, where available. To maintain the relative
position of children’s scores in the fifth grade
among other children’s sixth-grade scores (fifth-
grade mean max span = 4.52, sixth-grade mean
span = 4.88), both years of backward Corsi max
spans were z-scored and fifth-grade z-scores of the
22 children were used instead of sixth-grade z-
scores, which were used for the other 426 children.

Appendix C
Exploration of the Model Fit

In order to better interpret the nonlinear relation
between accuracy on incongruent trials of the non-
symbolic number comparison task and mathematics
achievement, we plot this relation in Figure 3. This
figure shows the fitted relation between untrans-
formed sixth-grade mathematics achievement and
nonsymbolic number comparison accuracy on
incongruent trials for Model M6, holding Hearts
and Flowers accuracy, backward Corsi span, early
reading achievement, and age at testing in sixth
grade at their sample means. As Figure 3 shows,
the magnitude of the relation between accuracy on
incongruent trials and mathematics achievement is
greater for students with higher accuracy, on aver-
age. For example, the estimated difference between
students with 30% and 40% accuracy on nonsym-
bolic number comparison is associated with a dif-
ference of 1.0 percentile rank points in sixth-grade
mathematics achievement, on average. The differ-
ence between students with 75% and 85% accuracy

on nonsymbolic number comparison is associated
with a difference of 1.3 percentile rank points in
sixth-grade mathematics achievement, on average.
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the online version of this article at the publisher’s
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Figure S1. Scatter Plots of Nonsymbolic Number
Comparison Performance Measures and Composite
Math Achievement (A, B, C) and a Plot of Congru-
ent by Incongruent Accuracy Rates (D)

Table S1. Descriptive Statistics for Experimental
and Standardized Measures

Table S2. Task Details for Number Comparison
Tasks of All Formats, n = 448

Table S3. Pearson r Values for Bivariate Correla-
tions Between Measures Included in Regression
Model Predicting Sixth-Grade Mathematics
Achievement

Table S4. Comparison of Nonsymbolic Compar-
ison Performance and Keymath-3 Subtest Correla-
tions
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Figure B1. Predicted sixth-grade mathematics achievement as a
function of accuracy on incongruent trials of nonsymbolic num-
ber comparison, for students with average domain-general execu-
tive functioning and early reading achievement, and of average
age at testing in sixth grade.

24 Wilkey, Pollack, and Price


